

The development of the SYLOS driven beamlines

Dr. Sergei Kühn

12.11.2020

European Union European Regional **Development Fund**

INVESTING IN YOUR FUTURE

The нк GHHG Beam Lines Location in Building A

eli

IR femtosecond pulses \rightarrow XUV/X-Ray attosecond pulses

The sylos GHHG Beam Lines Location in Building A

i eli

IR femtosecond pulses \rightarrow XUV/X-Ray attosecond pulses

SYLOS GHHG Beam Lines Goals and Technology

Attosecond pulse sources for user experiments

ei

- Highest XUV pulse energies for multiphoton and multicolor experiments
- High repetition rates for coincidence measurements
- High photon energy *for atomic inner shell dynamics*
- Short pulse durations for attosecond dynamics

Approach: Upscaling of well-established High-order Harmonic Generation in Gasses

SYLOS GHHG Beam Lines Scientific application areas

ei

AMO Attosciences

- Valence electron dynamics in atoms and molecules
- Inner shell electron dynamics in atoms
- Electronic-Vibrational dynamics in
 molecules

Ahmed H. Zewail The Nobel Prize in Chemistry 1999

Born: 26 February 1946, Damanhur, Egypt

/stems:

Died: 2 August 2016, Pasadena, CA, USA

Affiliation at the time of the award: California Institute of Technology (Caltech), Pasadena, CA, USA

Prize motivation: "for his studies of the transition states of chemical reactions using femtosecond spectroscopy."

Prize share: 1/1

zation methods (XUV-FROG, 2-IVAC, single shot AC)

The sylos GHHG COMPACT Anatomy and capabilities

XUV spectrum

i eli

XUV beam profile

"Normal" operation output

- at generation: *few µJ level*
- at end station:

Region	Min-Best
15-30 eV	30-300 nJ
20-50 eV	18-180 nJ
30-70 eV	1.8-18 nJ

• few/single pulses < 500 as

The sylos GHHG COMPACT Comissioning progress

Short term stability (9 min, shot-to-shot at 10 Hz)

I eli

XUV pointing stability

The sylos GHHG COMPACT Comissioning progress

I eli

The sylos LONG Anatomy and capabilities

ei

• few/single pulses < 500 as

The sylos LONG Multicolor split-delay stage

I eli

The sylos LONG Construction progress

eli

The sylos GHHG Beam Lines Summary

HR 100 M

- at generation: *few μJ level*
- few/single pulses < 500 as
- XUV-XUV pump-probe

∭eli

- Multicolor pump-probe
- Nonlinear XUV processes
- Experimental diagnostics
- User Endstation docking

Driving laser: SYLOS 2A 1 kHz 32 mJ 6 fs (~2 cycles) CEP stable

IR femtosecond pulses \rightarrow XUV/X-Ray attosecond pulses

GAS

MIR 100 KI

THANK YOU FOR YOUR ATTENTION!

European Union European Regional Development Fund

Hungarian Government

